Comparing 2 Populations (0.1) - 2 proportions

Notation:

$\underset{\text { proportions }}{\text { sample }} \hat{P}_{1}=\frac{x_{1}}{n_{1}} \quad \hat{P}_{2}=\frac{x_{2}}{n_{2}}$
compare 2 populations by doing inference on the difference.

$$
\hat{p}_{1}-\hat{p}_{2} \text { estimates } p_{1}-p_{2}
$$

Sampling Distribution of $\hat{p}_{1}-\hat{p}_{2}$
-shape: approx. Normal if

$$
\begin{aligned}
& n_{1} p_{1} \geq 10 \\
& n_{1}\left(1-p_{1}\right) \geq 10 \\
& n_{2} p_{2} \geq 10 \\
& n_{2}\left(1-p_{2}\right) \geq 10
\end{aligned}
$$

-Center: Mean $=P_{1}-P_{2}$
-Spread: $\sigma=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$

Confidence Intervals for comparing 2 proportions
Statistic \pm crit. value • St. der. of statistic

$$
\underbrace{\hat{p}_{1}-\hat{P}_{2} \pm z^{*} \underbrace{\sqrt{\frac{\hat{P}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}}_{\begin{array}{c}
\text { engin of } \\
\text { er or }
\end{array}} \begin{array}{l}
\text { called a } \\
2 \text { sample }
\end{array}}_{\begin{array}{c}
\text { Standard } \\
\text { error }
\end{array}}
$$

z Interval for a difference between 2 proportions
on cal:
stat \rightarrow tests \rightarrow B: 2-prop Z int

$$
\begin{aligned}
& \text { follow same } 4 \text {-step process } \\
& \text { Conditions: } \text { 1. Random - both samples must be } \\
& \text { randomly selected. } \\
& \text { 2. Normal }-n_{1} \hat{p}_{1} \geq 10 \\
& n_{1}\left(1-\hat{p}_{1}\right) \geq 10 \\
& n_{2} \hat{p}_{2} \geq 10 \\
& n_{2}\left(1-\hat{p}_{2}\right) \geq 10 \\
& \text { 3. Independent - samples taken } \\
& \text { independently and } \\
& 10 \% \text { rule should be } \\
& \text { met for both samples. }
\end{aligned}
$$

ex:

1. State: $\quad P_{1}=$ the true proportion of U.S. teens who watisites

$$
p_{2}=\text { the " " "adults ""." }
$$

$$
C \text {-level: } 95 \%
$$

2. Plan: Method is a 2 -Sample Z Interval for a difference between 2 proportions. Conditions: 1. Random - random sample of 800 teens and another random sample of 2253 adults were taken separately
3. Normal $-n_{1} \hat{p}_{1}=800(.73)=584 \geq 10$ $n_{1}\left(1-\hat{p}_{1}\right)=800(.27)=216 \geqslant 10$
$\left.n_{2}\left(\hat{P}_{2}\right)=2253 \cdot .47\right)=1059210$ $n_{2}\left(1-\hat{p}_{2}\right)=2253(.53)=1194=10$
4. Independent -2 samples were taken independently there are more than 8000 U.S.teens and 22530 U.S. adults.
3.D0
$.73-.47 \pm 1.96 \sqrt{\frac{.73(.27)}{800}+\frac{(.47)(.53)}{2253}}$

$$
\begin{array}{lc}
n_{1}=800 \\
n_{2}=2253 & \frac{1 / 9591 / 1}{1} \\
\hat{P}_{1}=.73 & (.223, .297) \\
\hat{P}_{2}=.47 & (.2037
\end{array}
$$

4. Conclude: We are 95% confident that the interval (.223, 297) captures the true difference in the proportions of U.S. teens \& adults who use social networking sites.
