
10.2 Comparing 2 Means	
Notation: Population 1	Population 2
true M,	M_2
sample means X,	₹2
sample M,	n ₂
sample st. dev. S,	S ₂
use $\bar{X}_1 - \bar{X}_2$ to estimate $M_1 - M_2$	
More info on the sampling distribution (M_1, M_2) on p . 631	

Conditions for 2-Sample procedures for means 1. Random - both Samples must be randomly selected (for an experiment the treatments should be randomly assigned) 2. Normal - either: populations are Normal 1. 1. 2. 30 & 1. 2. 230 1. 10 outliers or strong skewness on both graphs 3. Independent - 2 samples should be independent of each other and the 10% condition should be met for each.

Confidence Intervals for 2 means name of: 2 sample t interval for a difference between 2 means formula: $(x_1 - x_2) \pm t \times (x_1 + x_2) + x_2 \times (x_1 - x_2) \pm t \times (x_1 - x_2) + x_2 \times (x_$

Slep3 on calculator:

(-101, 7285) df = 7.5

Step 4) We are 99% confident that the interval (-101,7285) captures the true mean difference in capacity of grocery bags from Target and Dan's