11.29	dimensions rows x-way tables: (dons include "totals")
show the relationship between 2 variables	

X^{2} test for Homogeneity
to see if distributions are the same for all populations
one categorical variable with several treatments or populations

Step 1: H_{0} : there is NO DIFFERENCE in the the distributions of a categorical variable for several populations or treatments
H_{a} : there IS A DIFFERENCE in..

> Step 2 method: X X^{2} test for homogeneity
> Conditions: (1) Random
> (2) Expected counts $\geqslant 5$

> Expected counts $=\frac{(\text { row total) }(\text { (ct total })}{\text { table total }}$
> (3) Independent-samplestaken independently and 10% rule should be met.
step 3
$X^{2}=\underbrace{\sum_{\text {(obs -exp }} \frac{\text { exp }}{2}}_{\text {sum of all }}$ (\# of rous-1) (\# of column - 1)
sum of all
cells except
totals.

Step 4 same as always.

Step
ex: Ho: there is no difference in the distr. of superpower preference for U.K. \& U.S. kids
on calc:

1. enter observed couts in a matrix Ind $\rightarrow x^{\text {matrix }} \rightarrow$ edit $\rightarrow 1: A$

- dimensions (rows \times colum)
- values

2. Stat \rightarrow tests $\rightarrow C: X^{2}$-test
3. to see expected values:

$$
2 \text { nd } \rightarrow x^{-1} \rightarrow 2: B
$$

