2.1a Measuring position

Percentile: \% of data less than the specific
ex: a baby is in the $15^{\text {th }}$ percentile for weight. This means that 15% of babies born weigh less than it.
Finding a percentile:

$$
\frac{\text { \# of data below }}{\text { total \# of data }} \times 100
$$

ex: Jenny's test score
6 又
72334
$\frac{21}{25} \times 100=84 \%$

8 (6)
903

z-scores (standardized values)

tells how many standard deviations above or below the mean that a specific value is
positive z : above average negative z : below average $z=0$: exactly average

$$
\begin{aligned}
& \text { specific } \\
& Z=\frac{X-X^{2} \text { mean }}{S_{K}} \text { st. der. }
\end{aligned}
$$

Cumulative Relative Frequency Graphs (Ogives)
adds
evert below it
 graph that
shows percentiles
ex: Age at Inauguration
see p. 88 in your boor pres. at age 47.
Was this unusual?
(2) What is the median age
of inauguration

$$
\begin{aligned}
& \text { Median age } \\
& \text { of inauguration }
\end{aligned}
$$

median
ex: compare the heights of two kids.
Who is taller compared to their age group?

