Standard Div. of Discrete R.U. (and Variance)
 $$
\sigma_{x}=\sqrt{\sum p_{i}\left(x_{i}-\mu_{x}\right)^{2}}
$$
 $$
\text { Variance }=\sigma_{x}^{2}
$$

Continuous Random Variables:

when there is an infinite amount of possible values.
(over an entire interval of \#'s)
ex: height of waves at a beach
ex: \#'s between 0 and 1
probability distribution is a density curve (ch.2) (area underneath $=1$)

THINK BACK TO CH. 2!!

Normal Probability Models

Data can be Normally distributed, and so can probability.
ex: height of women $N(64,2.7)$

*think of area under curve -same as always, but now it is a probability.

Q: what is the probability that a chosen woman is between 64 and 66.7 inches tall?

$$
\frac{68 \%}{2}=34 \%=34
$$

If ladd/subtract 2 normal rand. variables then I'川 get a Normal distribution

6.2a Transforming a Random Variable

	Center	shape	spread
add/subblyact $9=$ constant	add/subtract a	no change	no change
ult/ divide by 9	Mult/divide by a	no change	Mult. by $\|a\|$

ex: Furnace Repair - repair person charges $\# 50+30 / \mathrm{hr}$. Let $X=\#$ of hours

