Starter 5/8
(1) graph the point $(-3,4)$.
(2) What Quadrant is the point in?
(3) What do the -3 and 4 represent?
(4) Draw in the triangle for the above point and find the length of the hypotenuse.

Polar Coordinates

Find other representations:

- add/subtract 2π from θ
- change sign of r and add/subtr.
π from θ
ex: find 3 other representations for $\left(2, \frac{\pi}{3}\right)$

Converting between polar and rectangular

$$
\begin{aligned}
& \begin{array}{l}
\sin \theta=\frac{y}{r} \rightarrow y \\
\cos \theta=\frac{x}{r} \rightarrow x \\
\frac{1}{x}
\end{array} \\
& \text { ex. convert to rectangular: } \\
& \left(2, \frac{3 \pi}{2}\right) \\
& y=2 \sin \frac{3 \pi}{2}=2(-1)=-2 \\
& x-2 \cos \frac{3 \pi}{2}-2(0)=0 \\
& (0,-2)
\end{aligned}
$$

ex. Convert to polar:

$$
(-1, \sqrt{3})
$$

step: graph

$$
\begin{array}{cc}
\text { Step 2: find } r & \text { Step } 3: \text { find } \theta \\
x^{2}+y^{2}=r^{2} & \tan \theta=\frac{\sqrt{3}}{-1} \\
(-1)^{2}+(\sqrt{3})^{2}=r^{2} & \tan \theta=-\sqrt{3} \\
1+3=r^{2} & \theta=\frac{2 \pi}{3} \\
4=r^{2} & \\
2=r & \left(2, \frac{2 \pi}{3}\right)
\end{array}
$$

(21) $\left(5, \frac{\pi}{6}\right)$
a) $\frac{\pi}{6}+2 \pi=\frac{\pi}{6}+\frac{12 \pi}{6}=\frac{13 \pi}{6}$

