Stats Starter 1/30

p. 356 \#27, 28
p. 404 \#76, 78

Mean and St. Deviation of a binomial R.V.

$$
\begin{array}{ll}
\mu_{x}=n \cdot p & \begin{array}{l}
\text { only for } \\
\text { binomial } \\
\text { situations }
\end{array} \\
\sigma_{x}=\sqrt{n \cdot p(1-p)} \quad
\end{array}
$$

ex: Find the mean (expected value) and standard deviation of the \# of kids (out of 5) with type O blood.

$$
\begin{aligned}
& n=5 \\
& p=0.25 \\
& \mu_{x}=5(0.25) \\
& =1.25 \\
& \sigma_{x}=\sqrt{5(.25)(1-.25)} \\
& =968
\end{aligned}
$$

Condition \#2 for Binomial Situations

- In the real world, most sampling is done without replacement. \rightarrow Not independent.
So: let's alter the independent rule:
If it's not independent (no replacement)
then it's okay if we have $<10 \%$ of population

