7.2 Sample Proportions

(mostly for categorical variables)
Q: How well does $\hat{P}_{\hat{S}_{\text {statistic }}}$ estimate $P_{\hat{T}_{\text {parameter }}}^{?}$
A: Look at the sampling distribution (socks)
center: The mean of the sampling distribution

$$
\text { of } \hat{P} \text { is: } \mu_{\hat{p}}=P
$$

spread: The standard deviation of the sampling distribution of \hat{p} is: $\sigma_{\hat{p}}=\frac{p(1-p)}{n e}$ $n=$ sample site as n increases
*only if our as n ill decrease
σ will
sample is less
than 10% of
the population
shape As n increases, the sampling distribution of \hat{P} become more "normal"
if $n \cdot p \geqslant 10$
and $n(1-p) \geq 10$

Ex: Suppose that 80% of high school students in CSD are planning tolattend a 4-year college. What is the probability that an SRS of size 125 will give a result within 7 percentage points of the true value?

$$
P(.73 \leq \hat{p} \leq 87)
$$

$$
\mu_{\hat{p}}=.8
$$

$\underset{\substack{\text { There are more } \\ \text { than } 1250 \\ H S \\ \text { S. }}}{\text { Tents in CSD }} \rightarrow \sigma_{\hat{p}}=\sqrt{\frac{.8(1-.8)}{125}}=036$
students in CSD
is it Approx. Normal? yes
$n(P)=125(8)=100 \geq 10^{\prime}$

$$
n(1-p)=125(.2)=25 \geq 10
$$

$=.948$
There is about a 95% chance that our SRS ($n=125$) will give a \hat{p} within 7% of the true proportion

$$
A \text { see p. } 438
$$

