Starter 2/11

p. 441 #43-46 $\int_{0}^{2} = \sqrt{\frac{P(1-P)^{2}}{n}} = \sqrt{\frac{P(1-P)^{2}}{n}}$

7.3a <u>Sample Means</u>
Taking means = smaller spread (less variability)
center The mean of a sampling distribution
of \bar{X} is: $\mathcal{M}_{\bar{X}} = \mathcal{M}$
pread: The standard deviation of the
Sampling distribution of \bar{x} is: $\sigma_{\bar{x}} = \int_{\bar{n}}^{\sigma}$
(only when n is less than
10% of our population)
larger samples = Smaller spread
shape.
If the population is Normal, then the
sampling distribution of x will
be Normal

