8.19 Confidence Intervals
(use a statistic to estimate a parameter)
Ex: Suppose we take an SRS of 50 U of U freshmen
Ex: Suppose we take an SRS of $50 U$ of U freshmen $\frac{\nu}{\prime}=1$ and give them an IQ test. Their mean score is 112. What can we say about the mean score of ALL U of U freshmen?

$$
\text { point estimate }=112
$$

Look at the Sampling Distribution.
Suppose we know the IQ scores have a st. dev. of 15.

$$
\begin{aligned}
& \mu_{\bar{x}}=112 \\
& \sigma_{\bar{x}}=\frac{15}{\sqrt{50}}=2.1 \quad \begin{array}{l}
\text { More than } 500 \\
U \quad \text { of } 4 \text { freshmen } \\
10 \% \text { rule }
\end{array} \\
& \text { Normal? yes. CLT says } \\
& 50>30 \text { it will }
\end{aligned}
$$

In 95% of samples, \bar{x} will be within 2σ of M

Estimate that the true mean is somewhere between $\frac{\frac{\| 12-2(2.1)}{107.8} \text { and } \frac{112+2(2.1)}{116.2}}{\frac{y \text { (interval estimate) }}{}}$
write interval as:

$$
\begin{aligned}
& 112 \pm 2(2.1) \\
& 107.8 \text { to marge } 116.2^{\text {terror }} \\
& 107.8<M<116.2 \\
& (107.8,116.2)
\end{aligned}
$$

$$
95 \% \text { = Confidence Level (C) }
$$

Interpreting Confidence Level
\qquad \% of all possible samples of size \qquad from the population will result in an interval that captures the true \qquad "
\qquad Interpreting Confidence Interval "। am \qquad \% confident that the interval from \qquad to \qquad captures the true parameter in context

Form of a Confidence Interval

