Starter 2/24

p. 498 \#49-52

$8.3 b$

One Sample t Interval for a Pop. Mean

$$
\bar{x} \pm t^{*} \frac{s}{\sqrt{n}}
$$

$$
\text { Stat } \rightarrow \text { Tests } \rightarrow \text { 8: Tinterval }
$$

(data or stats)

$$
\begin{aligned}
& \text { Proportions - use } z^{*} \\
& \text { Means - use } t^{*}
\end{aligned}
$$

3 Conditions:

1. Random Normal - Pop. or $n \geq 30$
2. Independent

More on t procedure conditions

- Randomness is more important than Normality
- $n<15$: can proceed if the data are close to Normal (unimodal, roughly symmetric, etc...)
- $15 \leq n<30$: can proceed unless extreme outliers
- $n \geq 30$: can always proceed (CLT)
examples on P. 513 (except when there are outliers or strong skewness).

1. Estimate μ - the mean \# of squares of T.P. needed to absorb $1 / 4$ cup $\mathrm{H}_{2} \mathrm{O}$ - at the 99% C-level. 2. Weill use a 1 -sample t Interval for a population mean Conditions: 1. Random - The rolls were randomly slackened 2. Normal - $n=18$

The dotplot shows : . : . : no outliers or
strong skewness
20 so we can assume the population is approx. Normal. 3. In dependent - $10(18)=100$ There are more than 180 rolls of T.P.
3. $\bar{x} \pm t^{*} \frac{s}{\sqrt{n}}$

$$
\bar{x}=24.944
$$

We used a calculator
$S=2.859$

$$
n=18
$$

$(22.991,26.897)$
4. We are 99% confident that the interval from 22.991 to 26.897 captures the true mean \# of T.P. squares needed to absorb $1 / 4$ cup of $\mathrm{H}_{2} \mathrm{O}$.

