9.19 Significance Tests

A procedure for comparing observed data with a claim / hypothesis
\rightarrow To decide how likely the claim is to be true

BBall example: there are 2 possible explanations for why only made $\frac{8}{20}$:

1. My claim was correct $(p=0.8)$ and by bad luck, an unlikely event occurred
2. lied and p is actually less than 0.8 (and the result of $\frac{8}{20}$ was not unlikely.

The probability of \#| is so small that we can be pretty sure \# 2 is correct.

We want to find evidence against

\rightarrow That claim is called the Null

$$
H_{0}: p=0.8
$$

"no difference"

The claim were trying to find evidence for is $P<.8$
\rightarrow called the Alternative Hypothes is $\left(\mathrm{H}_{\mathrm{a}}\right)$

Here, Ha_{a} is one sided-because were only looking in one direction. (c) Ex. p. 532

$$
\begin{aligned}
& H_{a}: p<0.8 \\
& \text { us } \mathrm{C}, ~>\text {, 东 for }
\end{aligned}
$$

Statistically Significant - not likely to happen by chance
If p-value is smaller than α

$$
P<\alpha
$$

ex: $\left.\begin{array}{l}\alpha=.05 \\ \alpha=.01\end{array}\right\}$ depends problem
Side note \#3: α should be decided before we look a data.

3 C's to the final step of significance tests:
C: Compare - p-val to α
C: Conclude - reject/notreject
C: Context

